
Lab 6: Frequency response of FIR filters

Grading

This Lab consists of three exercises. Once you have submitted your code in
Matlab Grader AND once the deadline has past, your code will be checked for
correctness. Note here, that upon submission, your code is already subjected to
some basic checks that are aimed to verify whether your code will compile; these
basics checks don’t say anything about the correctness of your submission. You
can visit Matlab Grader again after the deadline (give the servers some time
to do all the assessments; this might even take a few days) to see how well
you did. In case Matlab Grader indicates you failed an exercise, this does
not automatically imply that you failed the entire exercise. Each exercise is
subjected to n tests, where the number of tests can vary between exercises. In
case Matlab Grader indicates you failed the exercise, this means that not all
tests were passed (e.g. in an exercise with 7 tests, you could have passed 6 and
Matlab Grader will indicate you failed the exercise). Your grade is calculated
based on the number of tests you passed and not on the number of exercises
you passed.

1 Introduction

FIR filters can be used for many purposes. These filters are commonly used to
manipulate (components of) the input signal. In this lab the effects of a FIR
filter on different sinusoidal signals will be shown. The frequency response of a
FIR filter is uniquely related to the impulse response. When the input of a FIR
filter is a sinusoidal signal with a certain frequency, amplitude and phase, the
corresponding output signal is again a sinusoidal signal with the same frequency
but with a possibly different amplitude and phase.

2 Frequency response

The goal of this lab is to study the (frequency) response of FIR filters to inputs
such as sinusoids. We will use the Matlab function conv to implement filters and
freqz to obtain in an easy way the frequency response plots. As a result you
should learn how to characterize a filter by knowing how it reacts to different
frequency components in the input.

1



This Lab also introduces a practical filter: a nulling filter, which can be used
to remove sinusoidal interference, e.g. jamming signals in a radar.

2.1 Useful definitions

Frequency response:
Recall from the previous lab that the output y[n] for a given system with impulse
response h[n] and input x[n] is given by the following formula, where h[n] is
defined by the parameters bk:

y[n] =

N−1∑
k=0

h[k]x[n− k] =

N−1∑
k=0

bkx[n− k] (1)

Now let us assume that the input signal x[n] is a complex exponential (phasor)
with normalized frequency θ1: Aejφejnθ1 The output of the FIR filter to this
input signal can be determined as follows:

N−1∑
k=0

bkAe
jφej(n−k)θ1 =

N−1∑
k=0

bkAe
jφejnθ1e−jkθ1

= (

N−1∑
k=0

bke
−jkθ1) ·Aejφejnθ1

= H(ejθ1) ·Aejφejnθ1 .

(2)

Here, H(ejθ1) is the frequency-response function of the system as a result
of the input signal which consists of one single frequency θ1.

2.2 Freqz function in Matlab

The Matlab function freqz computes the frequency responseH(ejθ) of a discrete-
time LTI system. This frequency response is a series of complex numbers, each
with magnitude (amplitude) and angle (phase). Try out the following Matlab
code that can be used to compute and plot both the magnitude (absolute value)
and phase of the frequency response of a 2-point averaging filter

y[n] =
1

2
(x[n] + x[n− 1]) =

1

2

1∑
k=0

x[n− k]

as a function of θ in the range −π ≤ θ ≤ π.

h = [0.5, 0.5];

ww = -pi:(pi/100):pi;

freqresponse = freqz(h,1,ww );

subplot(2,1,1);

plot(ww,abs(freqresponse))

2



subplot(2,1,2);

plot(ww,angle(freqresponse))

xlabel(’Normalized radian frequency’)

Notes:

• For FIR filters the second argument of freqz(-,1,-) must always be
equal to 1.

• If the output of the freqz function is not assigned, then plots are generated
automatically. However the magnitude is given in decibels, which is a
logarithmic scale. For linear magnitude plots a separate call to plot is
necessary, as in the example above.

• The frequency vector ww should cover an interval of 2π for the variable θ

and its spacing must be fine enough to give a smooth curve for H(ejθ).

Exercise 1 [4 tests]

Use Euler’s formula to show that the frequency response of a 4-point averaging
filter

y[n] =
1

4

3∑
k=0

x[n− k]

is given by:

H(ejθ) =

(
2 cos(0.5θ) + 2 cos(1.5θ)

4

)
· e−j1.5θ (3)

Implement this frequency response directly in MATLAB. Use a vector that
includes a total of 2001 samples on the domain [−π, π]. Since the frequency
response is a complex valued quantity, use abs and angle to extract the mag-
nitude and phase of the frequency response for plotting. Make two subplots
underneath each other on the specified domain. The first subplot should con-
tain the magnitude of the frequency response and the second subplot should
contain the angle of the frequency response. Also add labels exactly like the
ones in figure 1. If done correctly your plot should look identical to this figure.

2.3 MATLAB find()

Often signal processing functions are performed in order to extract information
that can be used to make a decision. The decision process inevitably requires
logical tests, which might be done with if - then constructs in Matlab. How-
ever, Matlab permits vectorization of such tests and the find function is one
way to do lots of tests at once. In the following example find extracts all the
numbers that ’round’ to 3:

3



Figure 1: Frequency Response of a 4-point averaging filter

xx = 1.4:0.33:5;

k = find(round(xx)==3);

xx(k)

The argument of the find function can be any logical expression. Notice
that find returns a list of indices where the logical condition is true.

Exercise 2 [5 tests]

Now suppose that we have a frequency response of a 4-point averaging filter as
given in the previous exercise.

Use the find command to determine the values for θ where H(ejθ) is zero
and save these normalized frequencies in the array nulling in the order from
lowest to highest. Compare your answer to the frequency response that you
have plotted for the 4-point averaging function.

Note: Since there might be round-off errors in calculating H(ejθ), the logical
test should probably be a test for those indices where the magnitude (absolute
value) of H(ejθ) is smaller than some rather small number. Use 1 × 10−6 for
this purpose.

4



3 Nulling filters

In this section you are going to study the effects of a nulling filter to extract
information from a mixture of sinusoidal signals. Nulling filters are filters that
completely eliminate frequency components. If the frequency is θ = 0 or θ = π
then a 2-point FIR filter can do the nulling. The simplest possible general
nulling filter can have as few as 3 coefficients. If θnul is the desired nulling
frequency, then the following length-3 FIR filter

y[n] = x[n] − 2 cos(θnul)x[n− 1] + x[n− 2] (4)

will have a zero in its frequency response at θ = θnul. For example, a filter

designed to completely eliminate signals of the form Aej0.5πn would have the
following coefficients

b0 = h[0] = 1 ; b1 = h[1] = −2 cos(0.5π) = 0 ; b2 = h[2] = 1

because we would pick the desired nulling frequency to be at θnul = 0.5π.

Exercise 3 [5 tests]

Generate an input signal x1[n] that is the sum of two sinusoids:

x1[n] = x2[n] + 22 cos(0.44πn− π/3)

x2[n] = 5 cos(0.13πn)
(5)

Make the range of the input signal x1[n] 150 samples long over the range 0 ≤ n ≤
149 and plot in Matlab. Design a 3-point nulling filter that will eliminate the
following input frequencies: θ = 0.44π. For this part derive the filter coefficients
(filterco) of the nulling filter and implement the filter in MATLAB. Use conv

to filter the signal x1[n] by the designed filter. The output signal is y[n].
Make 3 subplots underneath each other in the following order (from upper to
lower graph) with the domain: x1[n] on [0,149], x2[n] on [0,149] and y[n] on [0,
151].

5


